Collisional broadening of some $2^1\Delta_g \leftarrow B^1\Pi_u$ lines in Na₂ molecules by optical-optical double resonance spectroscopy

Jing Liu (刘 静)^{1,2}, Kang Dai (戴 康)², and Yifan Shen (沈异凡)²

¹School of Science, Xi'an Jiaotong University, Xi'an 710049 ²Department of Physics, Xinjiang University, Urumqi 830046

Received January 16, 2006

Using the optical-optical double resonance (OODR) technique, we have studied the collisional broadening of some $2^{1}\Delta_{g} \leftarrow B^{1}\Pi_{u}$ lines in Na₂ molecules. A single line Ar⁺ laser is used to pump the sodium dimers from thermally populated ground state $X^{1}\Sigma_{g}^{+}$ level to the intermediate $B^{1}\Pi_{u}$ state. Then, a single-mode diode laser is used to probe the doubly excited $2^{1}\Delta_{g}$ state. The broadening rate coefficient is determined from the slope of the total linewidth versus Ne density curve. We obtain the average value $k_{\rm br} = (1.1 \pm 0.5) \times 10^{-8} \, {\rm cm}^{3}{\rm s}^{-1}$. The collisional excitation transfer between rotational levels of the $B^{1}\Pi_{u}$ state (i.e., $B^{1}\Pi_{u}(2,83/84) \leftarrow B^{1}\Pi_{u}(2,82)$) is also investigated. The rates can be determined from the relative intensities of the main peak and satellite lines, combined with a rate equation model. The rates of 1.25×10^{6} and $1.07 \times 10^{6} \, {\rm s}^{-1}$ are obtained, respectively.

OCIS codes: 020.0020, 020.2070, 020.3690.

In the past few years, photodissociation and collisional excitation transfer of alkali diatomic molecules have been extensively studied^[1-6]. However, most previous spectroscopic studies have involved low-lying states correlating to the ground state and first excited state in the separated atom limit. The range of energies between the low-lying state and the Rydberg state has not been systematically investigated.

In this paper, we have used the optical-optical double resonance (OODR) technique to study the collisional broadening of some $2^{1}\Delta_{g} \leftarrow B^{1}\Pi_{u}$ lines of Na₂ molecules. In OODR, the first laser (pump) is used to populate one rovibrational level of an intermediate electronic state. The second laser (probe) is then used to excite these molecules to a higher electronic state. In our work, we have excited the ground state $X^{1}\Sigma_{g}^{+}$ to the high-lying state $2^{1}\Delta_{g}$ of Na₂ molecules by using the OODR technique. In the present case, collisional line broadening is dominated by collisions with Ne atoms, with a minor contribution from Na atom collisions. Specifically, dissociative collisions such as

$$\operatorname{Na}_2(2^1\Delta_q) + \operatorname{Ne} \to \operatorname{Na}(5S) + \operatorname{Na}(3S) + \operatorname{Ne},$$
 (1)

quenching collisions such as

$$\operatorname{Na}_2(2^1 \Delta_g) + \operatorname{Na}(3S) \to \operatorname{Na}_2(X^1 \Sigma_g^+) + \operatorname{Na}(5S), \quad (2)$$

as well as elastic line broadening collisions contribute to the overall collision induced broadening linewidth. The collisional broadening rate coefficient is determined from the measured Doppler-free linewidth. The collisional excitation transfer between rotational levels of the $B^1\Pi_u(v', J')$ state is also investigated, and the collisional transfer rate for

$$Na_2[B^1\Pi_u(v,J)] + M \to Na_2[B^1\Pi_u(v,J')] + M,$$
 (3)

is measured, where M represents the perturber which can be any of the species presented in the vapors (Ne, Na, Na_2).

The experimental setup is shown in Fig. 1. The sodium is contained in a cylindrical Pyrex cell with inner length of 15.0 cm and inner diameter of 2.5 cm using neon as a buffer gas. The cell is sealed after baking and evacuating to 10^{-4} Pa. The cell is placed inside an oven (not shown in Fig. 1), which is heated with a thermistor. The temperature is measured with several thermocouples located at various points on the cell. The temperature of the cell is less than 360 °C. The cell is connected by a narrowbore tube and a greaseless stopcock to a vacuum and gas filling system from which neon gas is admitted as required. Neon pressures of 100-500 Pa are measured with a vacuum gauge. The density of sodium atoms in the vapor phase is obtained by measuring both the wing absorption coefficient and the ratio of the fluorescence to Rayleigh signal^[7].

Two lasers are used to study the two-step excitation of Na₂ molecules. An all line visible Ar^+ laser (Shanghai, Aiao Laser Machinery Co. Ltd, using a prism to select one of the lines) is used to pump sodium dimers in

Fig. 1. Experimental setup. IF: interference filter; L: lens; M: monochromator; P.C.: photon counter; BS: beam-splitter; PMT: photomultiplier tube.

the thermally populated ground state levels to the intermediate $B^1\Pi_{\mu}$ state. A single-mode diode laser (Tuioptics, frequency range of 820-836 nm, power of 40 mW, linewidth of 5 MHz) is used to excite Na_2 molecules from the $B^1\Pi_u$ state to the $2^1\Delta_q$ state. In this experiment, the Ar^+ laser at 514.5 nm (120 mW, focusing the laser output into the portion of the sample cell produced a power density of about 3 W/cm^2) used as a pump laser to pump a specific level (2,82) of the Na₂ $B^1\Pi_u$ state from a level (6,83) of the $X^1\Sigma_q^+$ ground state^[8], and the diode laser (the power density of about 1 W/cm^2) populates the $2^1 \Delta_q$ level as $2^1 \Delta_q(v, 83) \leftarrow B^1 \Pi_u(2, 82)$. The two laser beams counterpropagate through the cell. The $2^1 \Delta_q \to B^1 \Pi_u$ fluorescence in the direction perpendicular to the laser beams is focused on the slits of 0.66-m monochromator (AM566, Acton), and monitored by a photomultiplier tube (PMT1). A photon counter (M1109, Prenceton) records the PMT signals. The total emissions consist of allowed transitions from the $2^{1}\Delta_{q}(v, 83)$ level pumped through the two-step process to all possible $B^1\Pi_u(v', 82/83/84)$. To record the OODR spectra, the violet fluorescence emitted from the excited triplet states, mainly $2^{3}\Pi_{q}$ and $3^{3}\Pi_{q}$, which are populated via collisions from $2^{1}\Delta_{g}^{9}$, to the $a^{3}\Sigma_{u}^{+}$ state is detected by a filtered photomultiplier tube (PMT2).

In the impact limit, which is appropriate for the conditions of the present experiment, the Na₂[2¹ $\Delta_g(v, J) \leftarrow B^1\Pi_u(v', J') \leftarrow X^1\Sigma_g^+(v'', J'')$] two-step Doppler-free absorption line shape is a Lorentzian function with fullwidth at half-maximum (FWHM) Γ , given by

$$\Gamma = \Gamma_{\rm p} + \Gamma_{\rm n} + k_{\rm br}^{\rm Ne} n_{\rm Ne} + k_{\rm br}^{\rm Na} n_{\rm Na}, \qquad (4)$$

where, $\Gamma_{\rm P}$ is the predissociation linewidth, $\Gamma_{\rm n}$ is the natural linewidth of the transition, and $k_{\rm br}^i$ represents the broadening rate coeffcient, for a particular perturber species with number density n_i .

In this experiment, the density of the neon is $10^{16} - 10^{17}$ cm⁻³, while the density of atomic sodium is about three orders of magnitude smaller, so the broadening effect of sodium atoms can be neglected. Equation (4) can be reduced to

$$\Gamma = \Gamma_{\rm P} + \Gamma_{\rm n} + k_{\rm br}^{\rm Ne} n_{\rm Ne}.$$
 (5)

For the $2^1\Delta_g(v, 83) \leftarrow B^1\Pi_u(2, 82)$ transition, we obtain the neon broadening rate coefficient $k_{\rm br}^{\rm Ne}$ from the dependence of the measured total linewidth Γ on the neon gas density at fined temperature (fixed Na atom density). The line widths are measured by scanning the narrow-band $2^1 \Delta_q(v, 83) \leftarrow B^1 \Pi_u(2, 82)$ transition, while recording the molecular emission. The fluorescence line shape $(2^{1}\Delta_{g}(1,83) \rightarrow B^{1}\Pi_{u}(v',J'))$ with $n_{\text{Ne}} = 5.0 \times 10^{16} \text{ cm}^{-3}$ is shown in Fig. 2. The total linewidth Γ is measured with an accuracy of about 30 MHz. Figure 3 shows the variation of linewidth with neon atomic density. Combined with Eq. (5), the measured total linewidth versus neon atomic density is well represented by a least squares fitted straight line, whose intercept and slope give $\frac{1}{\tau} = \Gamma_{\rm P} + \Gamma_{\rm n} = (2.5 \pm 1.1) \times 10^9 \, {\rm s}^{-1} \, (\tau \text{ is the})$ $2^{1}\Delta_{g}(v, J)$ state lifetime) and broadening rate coefficient $k_{\rm br}^{\rm Ne} = (1.1 \pm 0.5) \times 10^{-8} \text{ cm}^{3} \text{s}^{-1}$, respectively. $k_{\rm br}$ only weakly depends on temperatures (i.e., $k_{\rm br} \propto T^{0.3[9]}$).

Fig. 2. Probe laser scans over Na₂ $2^1 \Delta_g(1, 83) \leftarrow B^1 \Pi_u(2, 82)$ transition. Molecular Na₂ $(2^1 \Delta_g(1, 83) \rightarrow B^1 \Pi_u(v', J'))$ fluorescence signal is monitored.

Fig. 3. Plot of the measured linewidth versus neon density for $2^1\Delta_g(1,83) \leftarrow B^1\Pi_u(2,82)$ transition.

Moreover, the sources of error in $k_{\rm br}^{\rm Ne}$ also involve the broadening effect of sodium atoms. We analogously obtain $k_{\rm br}^{\rm Ne} = (1.2 \pm 0.5)$, and $(1.0 \pm 0.5) \times 10^{-8} \text{ cm}^3 \text{s}^{-1}$ for the $2^1 \Delta_g(2, 83) \leftarrow B^1 \Pi_u(2, 82)$ and $2^1 \Delta_g(3, 83) \leftarrow B^1 \Pi_u(2, 82)$ transitions, respectively.

After the $B^1\Pi_u$ state has been prepared by pumping with a separate laser on a particular transition from the ground $X^1\Sigma_g^+$ state, we have observed collisional excitation transfer between different rotational levels of the $B^1\Pi_u$ state

$$B^1\Pi_u(v,J) + M \to B^1\Pi_u(v,J') + M, \tag{6}$$

where M represents the perturber which can be any of the species presented in the vapors (Ne, Na, Na₂). The steady-state rate equation for the process of Eq. (6) is of the following form

$$R_{J\to J'}n_J = n_{J'}/\tau_{J'},\tag{7}$$

where $R_{J \rightarrow J'}$ is the rate of population transfer from the J to J' level, and $\tau_{J'}$ is the lifetime of the J' level, n_J and $n_{J'}$ are the molecular densities of the $B^{1}\Pi_{u}(v,J)$ and $B^{1}\Pi_{u}(v,J')$ levels respectively. Equation (7) yields the ratio of the populations in the Jand J' levels, $n_{J'}/n_J = R_{J \to J'} \tau_{J'}$. This ratio is approximately proportional to the fluorescence intensity ratio. Figure 4 shows the main line corresponding to the $2^1\Delta_g(1,83) \leftarrow B^1\Pi_u(2,82)$ transition, and the satellite peaks labeled $\Delta J = +1$ and $\Delta J = +2$ are identified as the $2^{1}\Delta_{q}(1,84) \leftarrow B^{1}\Pi_{u}(2,83)$ and $2^1 \Delta_q(1,85) \leftarrow B^1 \Pi_u(2,84)$ transition, respectively. From Fig. 4, we obtain the intensity ratio of 0.01 for the $\Delta J = +1$ $(J = 82 \rightarrow J' = 83)$ excitation transfer collision, which yields $R_{J\to J+1} = (0.01)/\tau_{J+1}$. Since

Fig. 4. Laser frequency scan showing the main line corresponding to $2^{1}\Delta_{g}(1,83) \leftarrow B^{1}\Pi_{u}(2,82)$ transition and the satellite peaks labeled $\Delta J = +1$ and $\Delta J = +2$.

 τ_{J+1} is on the order of 8×10^{-9} s, we obtain an approximate value $R_{J\to J+1} = 1.25 \times 10^6 \text{ s}^{-1} \pm 45\%$. Similarly, we obtain $R_{J\to J+2} = 1.07 \times 10^6 \text{ s}^{-1} \pm 45\%$. The major sources of error in these rates are uncertainties in the intensity ratios and in $\tau_{J'}$.

This work was supported by the National Natural Science Foundation of China under Grant No. 10264004. Y. Shen is the author to whom the correspondence should be addressed, his e-mail address is shenyifan01@sina.com. J. Liu's e-mail address is xdlj@sohu.com.

References

- S. Antonova, G. Lazarov, K. Urbanski, and A. Marjatta Lyyra, J. Chem. Phys. **112**, 7080 (2000).
- Y. Shen and K. Dai, Chin. J. Lasers (in Chinese) 31, (Suppl.) 17 (2004).
- L. Morgus, P. Burns, R. D. Miles, A. D. Wilkins, U. Ogba, A. P. Hickman, and J. Huennekens, J. Chem. Phys. **122**, 144313 (2005).
- Z. J. Jabbour and J. Huennekens, J. Chem. Phys. 107, 1094 (1997).
- J. Huennekens, I. Prodan, A. Marks, L. Sibbach, E. Galle, and T. Morgus, J. Chem. Phys. **113**, 7384 (2000).
- A. D. Wilkins, L. Morgus, J. Hernandez-Guzman, J. Huennekens, and A. P. Hickman, J. Chem. Phys. **123**, 124306 (2005).
- Y.-F. Shen, A. Pulat, and K. Dai, Chin. Phys. Lett. 21, 1934 (2004).
- T.-J. Whang, H.-W. Wu, R.-Y. Chang, and C.-C. Tsai, J. Chem. Phys. **121**, 10513 (2004).
- A. Corney, Atomic and Laser Spectroscopy (Clarendon Press, Oxford, 1977) p.244.